StampedLock
与ReadWriteLock类似,但是一些情况下性能偏高一些
支持三种锁模式
- 写锁
- 悲观读锁
- 乐观读
写锁、悲观读锁的语义和 ReadWriteLock 的写锁、读锁的语义非常类似,允许多个线程同时获取悲观读锁,但是只允许一个线程获取写锁,写锁和悲观读锁是互斥的。不同的是:StampedLock 里的写锁和悲观读锁加锁成功之后,都会返回一个 stamp;然后解锁的时候,需要传入这个 stamp。相关的示例代码如下。
final StampedLock sl = new StampedLock();
// 获取 / 释放悲观读锁示意代码
long stamp = sl.readLock();
try {
// 省略业务相关代码
} finally {
sl.unlockRead(stamp);
}
// 获取 / 释放写锁示意代码
long stamp = sl.writeLock();
try {
// 省略业务相关代码
} finally {
sl.unlockWrite(stamp);
}
StampedLock 支持乐观读的方式。ReadWriteLock 支持多个线程同时读,但是当多个线程同时读的时候,所有的写操作会被阻塞;而 StampedLock 提供的乐观读,是允许一个线程获取写锁的,也就是说不是所有的写操作都被阻塞。
通过调用 tryOptimisticRead() 获取了一个 stamp,这里的 tryOptimisticRead() 就是我们前面提到的乐观读。之后将共享变量 x 和 y 读入方法的局部变量中,不过需要注意的是,由于 tryOptimisticRead() 是无锁的,所以共享变量 x 和 y 读入方法局部变量时,x 和 y 有可能被其他线程修改了。因此最后读完之后,还需要再次验证一下是否存在写操作,这个验证操作是通过调用 validate(stamp) 来实现的。
class Point {
private int x, y;
final StampedLock sl = new StampedLock();
// 计算到原点的距离
int distanceFromOrigin() {
// 乐观读
long stamp = sl.tryOptimisticRead();
// 读入局部变量,
// 读的过程数据可能被修改
int curX = x, curY = y;
// 判断执行读操作期间,
// 是否存在写操作,如果存在,
// 则 sl.validate 返回 false
if (!sl.validate(stamp)){
// 升级为悲观读锁
stamp = sl.readLock();
try {
curX = x;
curY = y;
} finally {
// 释放悲观读锁
sl.unlockRead(stamp);
}
}
return Math.sqrt(
curX * curX + curY * curY);
}
}
注意事项
StampedLock 不支持重入
不要随意打断线程
如果线程阻塞在 StampedLock 的 readLock() 或者 writeLock() 上时,此时调用该阻塞线程的 interrupt() 方法,会导致 CPU 飙升。
使用 StampedLock 一定不要调用中断操作,如果需要支持中断功能,一定使用可中断的悲观读锁 readLockInterruptibly() 和写锁 writeLockInterruptibly()
记得释放每一个锁
github: https://github.com/Hikiy
作者:Hiki
创建日期:2019.07.15
更新日期:2019.07.15
(转载本站文章请注明作者和出处 Hiki)